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This study deals with the mass-transport velocity within the bottom boundary 
layer of cnoidal waves progressing over a smooth horizontal bed. Mass-transport 
velocity distributions through the boundary layer are derived and compared 
with that predicted by Longuet-Higgins (1953) for sinusoidal waves. The mass 
transport a t  the outer edge of the boundary layer is compared with various 
theoretica.1 results for an inviscid fluid based on cnoidal wave theory and also with 
previous experimental results. The effect of the viscous boundary layer is to 
establish uniquely the bottom mass transport and this is appreciably greater 
than the somewhat arbitrary prediction for an inviscid fluid. 

1. Introduction 
I n  progressive surface waves, the fluid-particle motions include a steady drift, 

the mass-transport velocity, which was first predicted theoretically by Stokes 
(1847) for irrotational waves with a sinusoidal first-order motion. A significant 
advance in understanding mass-transport phenomena was made when Longuet- 
Higgins (1953) presented a general theory in which the effects of viscosity were 
included. His results are notably different from those given by Stokes’ irrotational 
theory, and, in particular, they predict the observed forward mass-transport 
velocity close to the bed. 

Nevertheless, significant departures from the theory do occur under various 
conditions. In  recent years, cnoidal waves have received increasing attention, 
and for shallow-water waves the first-order irrotational motion is perhaps better 
represented by cnoidal wave theory rather than as being simple harmonic. 
Le M6hautA (1968) has used the cnoidal theory of Laitone (1960) to calculate the 
mass transport for cnoidal waves assuming an inviscid fluid, and he has found it 
to be invariant with depth. Using an alternative approach, Spielvogel & 
Spielvogel (1974) have derived an expression for the mass transport near the 
bed, but this does not correspond to Le M6hautB’s results. Furthermore, these 
various expressions are somewhat arbitrary, depending on the definition of wave 
speed adopted for the irrotational flow. 

The purpose of the present paper is to investigate the bottom boundary layer 
of a cnoidal wave train and so derive the first approximation to the mass-transport 
velocity distribti tion close to the bed. The method employed has previously been 
applied to a first-order sinusoidal motion, summarized for example by Batchelor 
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(1967, p. 358), and is here extended to the case of cnoidal wave motion outside the 
boundary layer. The validity of conflicting formulae for the mass transport which 
have been given previously is discussed and a comparison of the results obtained 
here with experimental data is also made and indicates reasonable agreement. 
The effect of the viscous boundary layer is to establish uniquely the bottom mass 
transport, and this is found to be significantly greater than that expected for an 
inviscid fluid. 

2. Theory of the boundary layer 
The waves are assumed to be steady and two-dimensional, and to propagate 

through an incompressible fluid over a smooth horizontal bed. Only the viscous 
boundary layer close to the bed is considered, and the fist-order motion outside 
the boundary layer is taken to  be given by cnoidal wave theory (Laitone 1960) 
applied at the bed. Effects of viscous attentuation of the wave motion are 
consequently neglected. Let x denote the co-ordinate in the direction of wave 
propagation, y the co-ordinate measured vertically upwards from the bed and 
u and v the corresponding velocity components. In  addition, let t denote time, 
v kinematic viscosity, and U the horizontal velocity outside the boundary layer. 

It is reasonable to suppose that the boundary layer is thin compared with the 
characteristic length scales of the wave train, and therefore tha6 the Prandtl 
boundary-layer equations adequately describe the motion within the boundary 
laver : 

aulax + avpy = 0, (2.2) 

subject to the boundary conditions u = v = 0 at y = 0 and u = U as y -+ 00. 

Although the vertical velocity V and aU/ay are both of ordinary magnitude in 
the fluid's interior, the term VaU/ay is absent from the right-hand side of (2.1) 
as part of the boundary-layer approximation. At the boundary-layer edge 
( y  + a), aU/ay is taken to have its value a t  the bed in a wholly irrotational flow, 
which is zero, and VaU/ay will in fact be of the order of the other terms neglected. 

As discussed by Isaacson & Isaacson (1975, p. 108), dimensional considerations 
indicate that the problem is one in which physical independence exists between 
the x and y directions and is one which is dimensionally homogeneous in the 
extended set of dimensions NX YT,  where X and Y denote the length dimensions 
in the 2 and y directions respectively. We accordingly reduce the problem to one 
involving variables which are dimensionless in this extended set. The charac- 
teristic time and the characteristic lengths in the x and y directions are l/w, ilk 
and 6 respectively, where w is the angular wave frequency, k the wavenumber 
and 6 = (2v/w)* the boundary-layer thickness. (Note that the dimensions of v in 
the extended set are Y2/T.)  We therefore put 

= kx, T = wt, 7 =y/6, U' = ku/w, U'= kU/w, v'= v/wS. (2.3) 
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The boundary-layer equations (2.1) and (2.2) may then be written in a non- 
dimensional form : 

i aw 
(2.4) 

aul/aE + a v p q  = 0, 

with boundary conditions u‘ = 21’ = 0 a t  q = 0 and u‘ = U‘ as 7 + 00. 

and U’ may be expanded as power series in a small parameter e:  
A perturbation procedure is now introduced in which it is assumed that u‘, v‘ 

1 u’ = €%;+€%;,+..., 

v’ = €v;+s2v;+..., 

U’ = dJ;+s2u;,+ ... . 
Substituting (2.5) in (2.4) and collecting powers of 6, we obtain at first order 

with 

At second order, we shall require only the terms independent of time, and with 
temporal mean values denoted by overbars, we have 

- 
(2.9) with u; = 0 at q = 0. 

The motion will be assumed periodic in time and therefore 

au;la7 = [u;1;+2“ = 0. 

Similarly auya7 = 0, 

and (2.8) then gives for u’, 

(2.10) 

(2.11) 

(2.12) 

An additional boundary condition is also necessary to obtain a compIete solution 
for g, and we take 

au;,/av = 0 as 7-f co. (2.13) 

This has been accounted for in physical terms by Batchelor (1967, p. 360). 

(1953) as 
The mass-transport velocity to second order is given by Longuet-Higgiiis 

(2.14) 
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and may be written in terms of the dimensionless variables introduced in (2.3) as 

(2.15) 

where c is the wave speed ( =  oifk). The expression (2.14) was derived under the 
assumptions that the motion is periodic in time, that U,,, u and v may be expressed 
as power series in E ,  and that there are no steady first-order motions. No assump- 
tions are made a priori concerning the definition of E ,  and in accordance with the 
results of cnoidal theory we shall here put E = H/h,  where H is the wave height 
and h the trough depth. Although cnoidal theory is devdoped on the basis of an 
alternative perturbation parameter, its results are expressed as power series in 
H/h,  and equating E to t,his ratio enables those results to be applied directly to the 
present problem. 

The solutions to (2.6) and (2.12) will lead to the determination of vw/e2c, but 
before proceeding to derive these, it remains to consider the form of the first- 
order horizontal velocity U, just outside the boundary layer, which is taken from 
cnoidal theory. This is given by Le M6haut6 (1968) in terms of' the Jacobian 
elliptic function cn, which has argument q = (K(~)/n)(kx- wt)  and modulus K ,  as 

(2.16) 

where a minus sign has been introduced because here x is measured in the 
direction of wave propagation. Also, y is the ratio E(K)/K(K), g is the gravitational 
acceleration, E ( K )  is the complete elliptic integral of the second kind, K(K) is the 
complete elliptic integral of the first kind and K ' ~  = 1 - K ~ .  

It will be noted that, since K2cn2q = y - ~ ' 2 ,  the assumption of zero first-order 
steady motion inherent in the derivation of (2.14) is satisfied and U; may be 
written as a complex Fourier series 

with 

m 

U i  = Anein8,\ 
1 n = - m  

A_, = A,*, A ,  = 0. )  

(2.17) 

The asterisk denotes the complex conjugate and 

8 = E--7 = kx-wt.  (2.18) 

Now cn(q) may be expanded as a Fourier series (e.g. Abramowitz & Stegun 
1965, p. 575): 

(2.19) 

where 
(2.20) 

0 for neven, 

r = exp [ - n h T ( d ) / K ( ~ ) ] .  
p n = (  r tn/ (  1 + P) for n odd, 
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Squaring and substituting in (2.16),  we obtain 

where 

If we put A; = [c/(gh)3] A ,  for all n, then from (2.17) and (2.21) 

I A; = 4 ( 2 7 r / ~ K ( ~ ) ) ~ B ,  for n 2 1, 

A:, = Ah, A; = 0. 

(2.21) 

(2.22) 

(2.23) 

Hence A; depends only on the modulus K and may be determined numerically 
for all n for any given value of K .  

We now derive the solution to (2.6) in terms of A ,  by representing ui and vi 
as complex Fourier series: 

I m 

u; = C aneine, a_, = a,*, 
n = - w  

m 

V: = C bneine, b-, = b z .  
n = - w  

The solution that satisfies the boundary cond,itions (2.7) is found to be 

a, = An[l-exp(-a,q)], 

(2.24) 

(2.25) 

where an = ( l - i ) n + .  (2.26) 

Now if F and G are any two periodjc functions with zero mean values given by 

(2.27) 1 
m 

F = I: fneine, f.+ = f:, fo = 0, 
n=-m 

co * G = 2 gneine, g- ,  = gn,  90 = 0, 
n = - w  

then 
(2.28) 

n=l 

By applying (2.28) to the various terms on the right-hand side of (2.12), we can 
obtain an expression for the Eulerian d r i f tq :  

(2.29) 

Also 

exp[-(a,+a:)q] 

By substituting (2.29) and (2.30) into the right side of (2.12), integrating 
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U d  
FIGURE 1. Mass-transport velocity distributions through the bottom boundary layer for 
various values of the modulus K :  (a) K = 0.999, ( b )  K = 0.995, (c) K = 0.99, (d )  K = 0.95, 
(e) K = 0.90, ( f )  Longuet-Higgins' (1953) solution for shallow-water waves. 

twice with respect to y and applying the boundary conditions (2.9) and (2.13), 
it is found that 

Equation (2.28) is now re-applied to determine the Lagrangian component of 
the drift on the right of (2.15): 

The mass-transport velocity as given by (2.15) is now obtained simply by 
summing the right-hand sides of (2.31), (2.32) and (2.33). Substituting for a, 
and A,, we obtain after some simplifisation 

m 

U l ,  = c AA2(5 + 3 exp ( - 2n47) - 8 exp ( - ntq) cos (ntq)), (2.34) 

where U& = UAl/E2ghC-l. (2.35) 

n= 1 



Th.e bottom boundary layer of cnoidal waves 407 
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FIGURE 2. The mass-transport velocity at the outer edge of the bottom boundary layer as 
a function of the modulus K.  - - -, limiting value of U d  for small K and Longuet-Higgins’ 
(1953) solution for shallow-water waves; I- x --L experimental data of Allen & Gibson 
(1959) with indications of the range of error in estimates of K. 

Now since the wave speed c is given by cnoidal theory as (gh)) (1 + O[e]), the 
introduction of the factor c/(gh)$ into (2.34) will modify third- and higher-order 
terms only. Thus, to the present order of approximation, the alternative dimen- 
sionless forms of the mass-transport velocity, UJe2(gh)+ and UM/ezc, are also 
given by the right-hand side of (2.34). 

l t  has been shown that A; may be determined numerically for all n for any 
given value of the modulus K and therefore the mass-transport velocity may be 
found from (2.34). Some profiles for various values of K approaching unity are 
given in figure 1. 

The mass transport at the outer edge of the boundary layer can be found by 
examining (2.34) as 7 becomes large. In  such a case we have 

(2.36) 

Substituting from (2.16), 
-- 

(2.37) 

The variation of U& with K is presented in figure 2 for values of K near unity. By 
expanding y as a power series in ~ 2 ,  it can be shown that Ub tends towards the 
value 0.3125 as K becomes small, although, of course, the use of cnoidal theory is 
then invalid. 

Uk = ( ~ / ~ K ~ ) { ( Y - K ’ ~ ) ~ - ~ ( Y - K ’ ~ ) K ~ C ~  q 
= ( 5 / 6 ~ ~ )  {2y(2 - K ~ )  - 3y2 - d2). 2 +~4cn4q1 
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3. Mass transport in an inviscid fluid 
Previous studies relating to mass transport in cnoidal waves have been based 

on irrotational motion of an inviscid fluid. In  such a case the wave speed to second 
(or higher) order is not unique, and may be defined only after an additional 
assumption has been made. The two most usual assumptions, originally proposed 
by Stokes (1847), are, first, that the average horizontal velocity at any given 
location is zero and second, that the average horizontal momentum over a 
wavelength is reduced to zero by the addition of a uniform motion. These 
different assumptions affect the mean Eulerian velocity, and the mass-transport 
velocity is therefore not unique, but will reflect the assumption chosen. In  order 
to contrast the case of a viscous fluid with this and also to compare it with 
previous work relating to an inviscid fluid, the mass transport for inviscid motion 
is now derived for the two cases described. 

In  the first case, the Eulerian component of mass transport is zero, and also Ul 
does not vary with y. In  the interior of the fluid, (2.14) then reduces to 

The mass transport according to the first assumption is thus given by 

U& = ( 3 ~ ~ ) - ~ { 2 ~ ( 2  - K ~ )  - 3y2 - ~ ' 3 .  (3.2) 

For a viscous fluid, the mass transport outside the boundary layer is seen to  be 
2.5 times greater than this value, which is a result analogous to the case of 
sinusoidal wave motion. 

Under the second assumption, U, is given (Le M6haut6 1968) by 

where, as in (2.16), a sign change is introduced on account of the reverEal in the 
x direction. The mean value of U2 simplifies to 

The Lagrangian drift due to the first-order motion is the same as before, and the 
mass-transport velocity according to the second assumption is the sum of these 
two components. As mentioned previously, the factor c/(gh)* will modify only 
higher-order terms and thus, to the present order of approximation, the sum is 
zero : 

u& = 0. (3.5) 
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4. Comparison with other work 
The resemblance of (2.34) to the corresponding equation given by Longuet- 

Higgins (1953) for sinusoidal waves is hardly surprising since a, description of U, 
enters the expression only through the form A ,  is to take. Thus, when the first- 
order motion beyond the boundary layer is simple harmonic, we have from small 
amplitude wave theory and (2.17) 

for n = 1, 
for n > 1, 

where d is the mean depth. Equation (2.34) then reduces to the Longuet-Higgins 
(1963) solution: 

(5 + 3e-2'1 - 8e-7 cosr}. 
H2wk u -  - 16 sinha kd 

The factor (d/h)2 will alter higher-order terms only, and in the non-dimensional 
form adopted in (2.35), U& for shallow-water waves becomes 

U& = (5 + 3e-2'1 - 8e-'I cos 7). (4.3) 

This profile is indicated by a dashed line in figure 1 and represents the present 
solution for smaller values of K. The mass-transport velocity outside the boundary 
layer is in this case clearly 

The more general result (2.36) giving the mass transport a t  the boundary-layer 
edge does not depend on a particular choice for A ,  and so applies to any periodic 
first-order motion. This result was also obtained by Longuet-Higgins (1958, 
equation (20)), who showed, moreover, that it is independent of the vertical 
distribution of viscosity and so may apply to turbulent flow as well. 

Spielvogel & Spielvogel (1974) have derived an expression for the mass trans- 
port near the bed for cnoidal waves under the assumption of an inviscid fluid. In  
our notation, their expression is 

U& = 0.3125. (4.4) 

Now Le M6hautB (1968) has given expressions for the wave speed c to second 
order, corresponding to the assumptions outlined in $ 3  and deriving from the 
work of Laitone (1960). These are, respectively, 

(4.6) 
C 1-27 + €2 Y ( 4  +K21 - 3K4 ;:t:4-l- 131 [ 1 2 K 4  

-= I+€-  ( g W  2K2 

and 

Substitution of (4.6) and (4.7) in turn into (4.5) and simplification to maintain the 
present order of approximation gives (3.2) and (3.5) respectively. Thus the results 
of Spielvogel & Spielvogel(1974) are in agreement with those derived in 9 3. 
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velocity corresponding to the two cases discussed: 
Le M6haut6 (1968) has also obtained expressions for the mass-transport 

U,/& = ( 2 4 ~ * ) - ~  {5y( 2 - K ~ )  + ( 1 3 ~ ~  - lo)} 

UM/E2C = (8/8)-1{7y(2 - K2) - 8')'' + ( 7K2 - 6) (2 - K')}. 
(4.8) 

(4.9) and 

These are in marked contrast to (3.2) and (3.5) respectively. An examination of 
Le Mbhautb's approach indicates that his derivation of the mass-transport 
velocity is effectively based on the defhition 

(4.10) 

In  this context, qf is strictly associated with XI, the x co-ordinate of a given 
particle relative to its position x at some initial time, as well as with the inde- 
pendent variable x itself: 
L 

m 
qf = 2 enq' = - kK(K)  (x + xf + ct) 

n=O " l r  
(4.11) 

(with the appropriate sign change). Now k, xf and c are all given as power series 
in the form 

m 

f = 2 cnfn, (4.12) 
n=O 

with xb = 0. Therefore 

I c O K @ )  (x + cot) ,  q; = +) (xi + C,t )  + - Ll  Po. f 

k0 
qb = 7 

Substitution into (4.10) gives 

(4.13) 

(4.14) 

Only the first two terms on the right side of the above equation correspond to the 
expression derived by Longuet-Higgins (1953) from first principles and based on 
the assumptions mentioned earlier. We note that these assumptions do not 
specify the precise form of 8, nor is there any other restriction making that 
derivation inapplicable to cnoidal waves. The remaining terms on the right side 
of (4.14) are extraneous and represent the source of the discrepancy. We therefore 
prefer to adopt Longuet-Higgins' definition of the mass-transport velocity and 
hence take (3.2) and (3.5) as being valid under the corresponding assumptions for 
an inviscid fluid. 

On the basis of sinusoidal wave theory, Uk at the boundary-layer edge 
decreases from the shallow-wave limit of 0.3125 as the wave depth parameter kd 
increases, and does so appreciably when kd is greater than about 0.3. Considera- 
tions based on cnoidal theory do not reproduce this trend and in fact show that, 
as kd increases beyond the shallow-water range, U h  increases to the shallow 
sinusoidal wave approximation and so becomes unrealistic. Consequently com- 
parisons of the present theory with experiment would not be much use unless the 
data pertained to shallow-water waves. 
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FIGURE 3. Variation of UML with 

E = 0.1, 0.2, 0.3 respectively. ---, 
Brebner & Collins (1961). 

(a) d = 0.75 ft, (b )  d = 1.00 ft, (c) d 

0.10 1.00 

HIT)sinhkd 

HITtsinhkd. Cnoidal wave theory (solid curves) : 
= 1.25 ft, ( d )  d = 1.50 ft ;  subscripts 1, 2, 3 denote 
Longuet-Higgins (1953) ; 0 ,  experimental data of 

Allen & Gibson (1959) have presented experimental results for waves extending 
to the shallow-water region and from their paper it is possible to obtain corre- 
sponding values of U& and K for each experimental point, although the error in 
estimating K may be appreciable. An iterative procedure based on Laitone’s 
(1960) wave theory has been used for those few points with values of kd less than 
0.38, and the calculated values of Uh and K ,  together with indications of the 
range of error in each value of K ,  are given in figure 2. Although there is some 
departure from the theoretical curve for cnoidal waves, the points distinctly 
show the predicted decrease in U& as K approaches unity, a trend which is not 
accounted for by sinusoidal wave theory. 

Further measurements of the bottom mass-transport velocity for waves 
extending to the shallow-water range have been reported by Brebner & Collins 
(1961; see also Collins 1963). They found the bottom mass transport to become 
progressively smaller than Longuet-Higgins’ (1 963) result as the group 

HIT4 sinh kd 

(where T = 2n/w) increases beyond a certain value, and attributed this to the 
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onset of turbulence in the boundary layer at a Reynolds number based on 6 of 
160. However, this conclusion has since been questioned (e.g. by Sleath 1974) 
and the flow is now thought to remain laminar up to a Reynolds number of 
about 400 x 2).  

Unfortunately Brebner & Collins’ (1961) published data cannot be reduced to 
the form given here, but i t  is possible on the basis of cnoidal theory to transform 
the result (2.37) into an implicit relationship between the two dimensional groups 
they used, U, L (where L = 2n/k) and H/T* sinh kd. This has been carried out for 
the values of d they specified and typical values of E ,  and the resultant curves are 
compared with Brebner & Collins’ (1961) data in figure 3. 

The cnoidal wave solution is not particularly suitable for such a plot and the 
curves have been terminated where they predict larger values of U,L than does 
Longuet-Higgins’ (1953) theory. When kd increases beyond this limit, the present 
theory breaks down and, as mentioned previously, does not reproduce the 
reduction in U& that is predicted by sinusoidal theory. On the other hand 
Longuet-Higgins (1953, p. 572) has pointed out that for small values of kd his 
results may not hold unless, essentially, E is very small, and consequently over 
this range the results based on cnoidal theory are probably more representative. 

Although the calculated curves are based only on typical values of E ,  it is 
apparent that for the depths indicated they show a reduction in U,L from 
Longuet-Higgins’ ( 1953) solution beginning in approximately the same range of 
HITfsinhkd as that in the experimental results. Indeed, regafdless of the 
probable extent of experimental error, since values of E and d are uncorrelated, 
the points follow the trend of the curves based on cnoidal theory as well as can be 
expected. The behaviour found by Brebner & Collins (1961) to occur at the higher 
values of HIT4 sinh kd is, then, in accordance with the present theory and is not 
necessarily due to transition to turbulence. 

This study was carried out while the author held a National Research Council 
Postdoctoral Research Associate appointment a t  the Joint Tsunami Research 
Effort, Environmental Research Laboratories, NOAA, Honolulu, Hawaii, and 
he is grateful to the National Research Council for its support. 
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